CREB1 directly activates the transcription of ribonucleotide reductase small subunit M2 and promotes the aggressiveness of human colorectal cancer
نویسندگان
چکیده
As the small subunit of Ribonucleotide reductase (RR), RRM2 displays a very important role in various critical cellular processes such as cell proliferation, DNA repair, and senescence, etc. Importantly, RRM2 functions like a tumor driver in most types of cancer but little is known about the regulatory mechanism of RRM2 in cancer development. In this study, we found that the cAMP responsive element binding protein 1 (CREB1) acted as a transcription factor of RRM2 gene in human colorectal cancer (CRC). CREB1 directly bound to the promoter of RRM2 gene and induced its transcriptional activation. Knockdown of CREB1 decreased the expression of RRM2 at both mRNA and protein levels. Moreover, knockdown of RRM2 attenuated CREB1-induced aggressive phenotypes of CRC cells in vitro and in vivo. Analysis of the data from TCGA database and clinical CRC specimens with immunohistochemical staining also demonstrated a strong correlation between the co-expression of CREB1 and RRM2. Decreased disease survivals were observed in CRC patients with high expression levels of CREB1 or RRM2. Our results indicate CREB1 as a critical transcription factor of RRM2 which promotes tumor aggressiveness, and imply a significant correlation between CREB1 and RRM2 in CRC specimens. These may provide the possibility that CREB1 and RRM2 could be used as biomarkers or targets for CRC diagnosis and treatment.
منابع مشابه
Modulating ICBP90 to suppress human ribonucleotide reductase M2 induction restores sensitivity to hydroxyurea cytotoxicity.
BACKGROUND Ribonucleotide reductase (RR) inhibition by hydroxyurea (HU) causes deoxyribonucleotide (dNTP) depletion, which activates the replication checkpoint, a part of the S-phase checkpoint that responds to DNA damage by inhibiting late origin firing. It also transactivates RR and other genes involved in DNA replication and repair. ICBP90 (overexpressed in breast cancer) is a novel Rb-assoc...
متن کاملDownregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells
Ribonucleotide reductase subunit M2 (RRM2) is associated with the biological behaviours of cancers, including apoptosis, cell proliferation, invasion, cell cycle and migration. Previous studies have suggested that the expression of RRM2 plays critical roles in tumorigenesis in several cancer types. However, the precise molecular mechanism remains unknown. We previously identified RRM2 as a nove...
متن کاملPotent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo.
PURPOSE Ribonucleotide reductase (RR) is a therapeutic target for DNA replication-dependent diseases such as cancer. Here, a potent small interfering RNA (siRNA) duplex against the M2 subunit of RR (RRM2) is developed and shown to reduce the growth potential of cancer cells both in vitro and in vivo. EXPERIMENTAL DESIGN Three anti-RRM2 siRNAs were identified via computational methods, and the...
متن کاملRibonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers
The overexpression of RRM2 [RR (ribonucleotide reductase) small subunit M2] dramatically enhances the ability of the cancer cell to proliferate and to invade. To investigate further the relevance of RRM2 and CRCs (colorectal cancers), we correlated the expression of RRM2 with the clinical outcome of CRCs. A retrospective outcome study was conducted on CRCs collected from the COH [(City of Hope)...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کامل